ACI 562, Code Requirements for Assessment, Repair & Rehabilitation of Concrete Structures

Larry Kahn, past chair ACI 562, chair ACI TAC

ACI 562-16, soon 562-19, plus
ACI/ICRI Guide to the Code for Assessment, Repair and Rehabilitation of Concrete Buildings
What is wrong with concrete repair practice?

- Focus on new design in education
- Many design professionals do not consider repair a distinct area
 - Limited assessment and evaluation of structures
 - Lack of understanding of durability
 - Disdain from “historic preservationists”
- Lack of contractor focus on quality – except for ICRI members
- US national codes
 - IBC – comprehensive document for new design
 - IEBC – does not establish a clear standard of care for repair
Need for ACI 562

• Why?
 • Standard of care?
 • New design - follow code
 • What is it for repair projects?
 • Protect design professionals
 • Improve practice
 • Longer living structures
 • “Service-life” rarely ends
 • Deterioration does not end
 • Repairs will be required
 • Limited durability
 • Greater exposure
 • Are repaired structures safe?

Adapted from: Extending the Service Life of Parking Structures, Shiu, K, and Stanish, K. Concrete International V. 30 No. 4
Standard of Care vs. Codes

- Standard of Care - “level of effort a prudent LDP would be expected to provide on a project”
 - Determined from codes, industry standards, guidelines, tradition
 - Codes - Minimum requirements for design
Standard of Care – IEBC???

• Missing from IEBC
 • The how of minimum evaluation requirements
 • How bad is a structure?
 • Analysis considerations?
 • Reliability of repaired structures?
 • Durability considerations?
 • Consideration of service life
 • Construction quality assurance

- Set minimum requirements for repair and quality
- Provides clear requirements for strengthening
- Better and uniform assessment & evaluation
- Durable repaired structures
Unsafe & Substantial Structural Damage Conditions – ACI 562

• IEBC unclear
• Falling debris hazards
 • Make safe
• $U_c/\phi R_{nc} > 1.5$ $U_c/\phi R_{nc} > 1.33$
 • Current demand - U_c
 • Gravity and wind loads
 • Current capacity - ϕR_{nc} (include damage)
 • Report consistent with Section. 1.5.2
 • Repairs to current or original code – $U_c/\phi R_{nc} \leq 1.05$
ACI 562 Adoption

- Limited ACI 562 statewide adoption to date (OH and HI)
- IEBC Alternate procedure
- IEBC – 2021
 - Preliminary hearings in April 2019
 - Final hearings in October 2019
- Why ACI 562
 - Current practice is not working
 - IEBC is not sufficient
 - Design professionals need help
 - Contractors need a “level field”
 - Owners need assurance
 - Code officials need a DOCUMENT
Example 4, Guide to the Code
Strengthening of a Parking Garage

11 Story office building over 2 story parking garage supporting open air plaza (flat slab with drop panels). Deflections and top surface cracking noted.

10 @ 30’-0” + 1 @ 20’-0”
Preliminary Assessment

- Document Review, Site Conditions, As-built, Basis of Design
- Design Basis Code: substantial damage → IBC 2009, ACI 318-08 (Sect. 1.2.4)
- Existing condition (Sect. 1.7.1, 1.7.3)
 - Reinforcement GPR: supplemented by chipping: 4-in. cover to top bars vs. ¾-in. as-designed for garage slab
 - ϕM_n reduced 15-45% and ϕV_n reduced 18-46% (use design values for $f' c$ and f_y)
Preliminary Assessment

- Drop panel “d” for plaza, actual = 18 ¾-in. vs design = 26 ¾-in.
- ϕM_n and ϕV_n reduced \approx 30%
Assessment

- Existing geometry (Sect. 6.2.2, 6.2.3)
- Concrete strength f_c' by testing lab reports and f_y by mill cert. (6.3.4)
- Structural analysis (5.1.3)
 - Original design by planar equivalent frame analysis – OK
 - As-built using same procedure, ϕ factors not reduced
Repair Design – concept 1

- Location with excessive cover
 - Remove cover, place new bars plus shear friction reinforcement (7.4.4)
 - Unload slab before placement of new concrete (6.7.1)
Repair design – concept 1

- Location with thin drop panel
 - Install steel brackets to increase b_o and shorten L_n
Repair design – Concept 2

- Location with and without drop panels
 - Build column capitals and some drop panels to increase \(b_o \) & \(d \), and shorten \(L_n \)
 - Apply Carbon FRP to bottom of slab – consider moment redistribution
 - Load Test (Sect. 6.8)
Moment redistribution: “as-is” not as “originally conceived”

ACI 440.2R, positive moment due to LL plus M redistribution (Chap. 7)
\[\phi_{ex} R_{ex} \geq 1.2D + 0.5L + 0.2S \] (Sect. 5.5.3)

Elastomeric coating to seal cracks from water intrusion + epoxy injection for shear

FRP, Coat with intumescent paint

Actual moment diagram

Original analysis moment diagram
Design Concept 2 – drop panel + capital

- costs 20% less than concept 1
New Capital – Shear Friction
• Shoring by Licensed Design Professional (Specialty Engineer, 9.2)
 – Reviewed by Designer
 – All phases included removing DL
• Environmental issues including debris removal (Sect. 9.4)
• Inspection at critical phases (Sect. 10.2)
• Minimum roughness (Sect. 7.4.6)
• Pull-out testing of epoxy-grouted dowels (Sect. 7.6.5)
• Repair concrete flow and strength
• Impact echo of joint between drop panel and slab (Sect. 6.4.3.2)
• Bond test of CFRP strips (Sect. 7.8)
Inspection & Repair

LEGEND:
○ DESIGNATES POSSIBLE VOID BETWEEN BOTTOM OF CONCRETE SLAB AND TOP OF COLUMN CAPITAL

OUTLINE OF COLUMN CAPITAL BELOW

AREA TO BE INJECTED
Load Test per ACI 437.2-13 (Sect. 6.8.1)

- $TLM = 1.3(D_W + D_S)$
- $TLM = 1.0D_W + 1.1D_S + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- $TLM = 1.0D_W + 1.1D_S + 1.6(L_r \text{ or } S \text{ or } R) + 1.0L$
\[\Delta_{\text{residual}} < \frac{\Delta_{\text{max}}}{4} \quad \text{or} \quad \Delta_{\text{max}} < 0.05 \text{ in.} \quad \text{or} \quad \Delta_{\text{max}} < \frac{L_{\text{short}}}{2000} \quad \text{or} \quad \Delta_{\text{max}} < \frac{L_{\text{short}}}{180} \]

\[
\Delta_{\text{residual}} = 0.358 \text{ in.} < 1.63 \text{ in} \rightarrow \text{passed test}
\]

\[
\Delta_{\text{residual}} \text{ after 24 hours} = 0.125 \text{ in} < 0.147 \text{ in} (\frac{L_{\text{short}}}{2000}) \rightarrow \text{passed test}
\]

\[L_{\text{short}} = 24' - 6'' \text{ (294 in)} \quad l_g \text{ in the negative moment regions with injection} \]

\[l_{cr} \text{ in the positive moment regions without injection} \]
Project completion

- The owner was provided with copies of the project and construction documents and the recommended monitoring and maintenance program (Sect. 1.5.3.1 & 1.6.3)
 - Visual inspection after one year
 - Monitoring and maintenance of crack repairs, top membranes, & CFRP
Conclusion & Questions

• Repair is a big part of ACI together with ICRI
 • 30% of ACI technical committees
 • ACI 562 Code and 563 Specifications v. ACI 318 and 301
 • Covering $20 Billion construction in U.S. annually